Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Poly[aqua[μ_2 -1,1'-(butane-1,4-diyl)diimidazole](μ_2 -naphthalene-1,4dicarboxylato)nickel(II)]

Xian-Zhi Zou

Department of Chemistry, College of Chemistry and Biology, Beihua University, Jilin City 132013, People's Republic of China Correspondence e-mail: jlsxzz@126.com

Received 24 July 2008; accepted 29 July 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.005 Å; R factor = 0.050; wR factor = 0.097; data-to-parameter ratio = 14.0.

In the title compound, $[Ni(C_{12}H_6O_4)(C_{10}H_{14}N_4)(H_2O)]_n$, the coordination polyhedron around each Ni^{II} atom is a distorted *cis*-NiN₂O₄ octahedron. The naphthalene-1,4-dicarboxylate and 1,1'-(butane-1,4-diyl)diimidazole ligands bridge the Ni centres to form a two-dimensional (4,4)-network, and O- $H \cdots O$ hydrogen bonds complete the structure.

Related literature

For general background, see: Batten & Robson (1998). For a related structure, see: Ma *et al.*, (2003).

Experimental

Crystal data	
$[Ni(C_{12}H_6O_4)(C_{10}H_{14}N_4)(H_2O)] a$	= 12.4213 (12) Å
$M_r = 481.15$ b	e = 13.2543 (13) Å
Monoclinic, $P2_1/n$ c	= 13.4328 (13) Å

 $\beta = 107.361 \ (2)^{\circ}$ $V = 2110.8 \ (4) \ \text{\AA}^3$ Z = 4Mo $K\alpha$ radiation

Data collection

Bruker APEX CCD diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 1998) $T_{min} = 0.827, T_{max} = 0.866$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.097$ S = 1.054157 reflections 297 parameters 3 restraints $\mu = 0.96 \text{ mm}^{-1}$ T = 293 (2) K $0.19 \times 0.17 \times 0.15 \text{ mm}$

11720 measured reflections 4157 independent reflections 2982 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.063$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.54 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$

Table 1

Selected bond lengths (Å).

Ni1-O2 2.040	(2) Ni1-N1	2.060 (3)
Ni1-O1 ⁱ 2.116	$(2) Ni1 - N4^{ii}$	2.099 (3)

Symmetry codes: (i) $x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) x, y - 1, z.

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$ \begin{array}{c} \hline O1W - HW12 \cdots O1^{iii} \\ O1W - HW11 \cdots O4 \end{array} $	0.819 (16) 0.83 (4)	1.847 (18) 1.83 (4)	2.661 (3) 2.651 (3)	172 (3) 169 (3)
	. 1 1 .	1		

Symmetry code: (iii) $-x + \frac{1}{2}, y - \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *SMART* (Bruker, 1998); cell refinement: *SAINT* (Bruker, 1998); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The author thanks Beihua University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2770).

References

Batten, S. R. & Robson, R. (1998). Angew. Chem. Int. Ed. 37, 1460–1494.
Bruker (1998). SMART, SAINT and SADABS. Bruker AXS Inc., Madison,
Wisconsin, USA.

Ma, J.-F., Yang, J., Zheng, G.-L., Li, L. & Liu, J.-F. (2003). Inorg. Chem. 42, 7531–7534.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2008). E64, m1105 [doi:10.1107/S1600536808024008]

Poly[aqua[µ2-1,1'-(butane-1,4-diyl)diimidazole](µ2-naphthalene-1,4-dicarboxylato)nickel(II)]

X.-Z. Zou

Comment

Metal-organic frameworks are currently of great interest because of their interesting structures and potential applications. So far, some interesting interpenetrated or entangled metal-organic networks with bis(imidazole)-containing ligands have been documented (Batten & Robson, 1998). Flexible ligands such as 1,1'-(1,4-butanediyl)bis(imidazole) (*L*) have been less explored to date (Ma *et al.*, 2003). In this work, we selected 1,4-naphthalenedicarboxylic acid (H₂ndc) and *L* as linkers, generating a new coordination polymer, [Ni(ndc)(*L*)(H₂O)], (I), which is reported here.

In compound (I) each Ni^{II} atom is six-coordinated by two N atoms from two different *L* ligands, and four O atoms from three carboxylate oxygen atoms (one bidentate, one monodentate) and one water molecule in a distorted cis-NiN₂O₄ octohedral coordination sphere (Fig. 1). The two neighbouring Ni^{II} atoms are bridged by the ndc and *L* ligands to form a two-dimensional (4,4) network (Fig. 2) and O—H···O hydrogen bonds arising from the water molecule (Table 2) complete the structure.

Experimental

A mixture of H_2 ndc (0.5 mmol), *L* (0.5 mmol), NaOH (1 mmol) and NiCl₂·6H₂O (0.5 mmol) was suspended in 12 ml of deionized water and sealed in a 20-ml Teflon-lined autoclave. Upon heating at 433 K for one week, the autoclave was slowly cooled to room temperature. Green blocks of (I) were collected, washed with deionized water and dried.

Refinement

The H atoms on C atoms were generated geometrically and refined as riding with C—H = 0.93Å and $U_{iso}(H) = 1.2U_{eq}(C)$. The water H atoms were located in a difference Fourier map and refined with the O—H distance restrained to 0.85 ± 0.01 Å.

Figures

Fig. 1. The structure of (I), with displacement ellipsoids for the non-hydrogen atoms drawn at the 30% probability level. Symmetry codes: (i) x, y - 1, z; (ii) 1/2 + x, 0.5 - y, z - 1/2.

Fig. 2. View of part of the polymeric layer structure of (I).

$Poly[aqua[\mu_2-1,1'-(butane-1,4-diyl) diimidazole](\mu_2-naphthalene-1,4-dicarboxylato) nickel(II)]$

$F_{000} = 1000$
$D_{\rm x} = 1.514 {\rm Mg m}^{-3}$
Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Cell parameters from 4157 reflections
$\theta = 1.9-26.1^{\circ}$
$\mu = 0.96 \text{ mm}^{-1}$
T = 293 (2) K
Block, green
$0.19\times0.17\times0.15~mm$

Data collection

Bruker APEX CCD diffractometer	4157 independent reflections
Radiation source: fine-focus sealed tube	2982 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.063$
T = 293(2) K	$\theta_{\text{max}} = 26.1^{\circ}$
ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 1998)	$h = -9 \rightarrow 15$
$T_{\min} = 0.827, T_{\max} = 0.866$	$k = -16 \rightarrow 14$
11720 measured reflections	$l = -16 \rightarrow 16$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.049$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.097$	$w = 1/[\sigma^2(F_o^2) + (0.0253P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.05	$(\Delta/\sigma)_{\rm max} < 0.001$
4157 reflections	$\Delta \rho_{\rm max} = 0.54 \text{ e } \text{\AA}^{-3}$

297 parameters

 $\Delta \rho_{min} = -0.40 \text{ e } \text{\AA}^{-3}$

3 restraints

Extinction correction: none

Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	0.2969 (3)	0.1196 (2)	0.2222 (3)	0.0208 (8)
C2	0.2145 (3)	0.1584 (2)	0.2758 (2)	0.0190 (8)
C3	0.2114 (3)	0.2586 (2)	0.2946 (3)	0.0264 (9)
H3	0.2583	0.3019	0.2721	0.032*
C4	0.1392 (3)	0.2986 (2)	0.3472 (3)	0.0238 (8)
H4	0.1399	0.3677	0.3597	0.029*
C5	0.0674 (3)	0.2376 (2)	0.3805 (2)	0.0203 (8)
C6	-0.0034 (3)	0.2829 (2)	0.4420 (3)	0.0218 (8)
C7	0.0636 (3)	0.1328 (2)	0.3576 (2)	0.0180 (7)
C8	0.1382 (3)	0.0919 (2)	0.3055 (2)	0.0172 (7)
С9	0.1306 (3)	-0.0118 (2)	0.2806 (3)	0.0256 (8)
Н9	0.1795	-0.0393	0.2473	0.031*
C10	0.0536 (3)	-0.0723 (3)	0.3042 (3)	0.0281 (9)
H10	0.0497	-0.1404	0.2868	0.034*
C11	-0.0196 (3)	-0.0320 (3)	0.3546 (3)	0.0312 (9)
H11	-0.0722	-0.0738	0.3706	0.037*
C12	-0.0157 (3)	0.0664 (2)	0.3806 (3)	0.0257 (8)
H12	-0.0657	0.0914	0.4141	0.031*
C13	0.1710 (3)	0.2460 (3)	-0.1581 (3)	0.0335 (10)
H13	0.1644	0.1937	-0.2056	0.040*
C14	0.1151 (4)	0.3340 (3)	-0.1787 (3)	0.0430 (11)
H14	0.0644	0.3537	-0.2418	0.052*
C15	0.2219 (3)	0.3312 (3)	-0.0198 (3)	0.0310 (9)
H15	0.2581	0.3510	0.0484	0.037*
C16	0.1118 (3)	0.4914 (2)	-0.0714 (3)	0.0274 (9)
H16A	0.1268	0.5024	0.0029	0.033*
H16B	0.0311	0.4976	-0.1039	0.033*
C17	0.1715 (3)	0.5711 (2)	-0.1149 (3)	0.0296 (9)
H17A	0.1498	0.5648	-0.1903	0.036*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H17B	0.2523	0.5605	-0.0882	0.036*
C18	0.1434 (3)	0.6771 (2)	-0.0863 (3)	0.0293 (9)
H18A	0.0622	0.6862	-0.1083	0.035*
H18B	0.1705	0.6855	-0.0112	0.035*
C19	0.1971 (3)	0.7560 (2)	-0.1379 (3)	0.0293 (9)
H19A	0.2754	0.7381	-0.1277	0.035*
H19B	0.1590	0.7559	-0.2123	0.035*
C20	0.1050 (3)	0.9021 (3)	-0.0704 (3)	0.0395 (11)
H20	0.0353	0.8734	-0.0749	0.047*
C21	0.2746 (3)	0.9270 (2)	-0.0777 (3)	0.0238 (8)
H21	0.3436	0.9163	-0.0898	0.029*
N4	0.2477 (2)	1.01080 (19)	-0.0399 (2)	0.0212 (7)
C23	0.1402 (3)	0.9948 (3)	-0.0365 (3)	0.0378 (10)
H23	0.0973	1.0419	-0.0137	0.045*
N1	0.2384 (2)	0.2446 (2)	-0.0581 (2)	0.0224 (7)
N2	0.1476 (2)	0.38862 (19)	-0.0887 (2)	0.0232 (7)
N3	0.1920 (2)	0.8579 (2)	-0.0970 (2)	0.0240 (7)
01	-0.05860 (18)	0.36339 (16)	0.40707 (17)	0.0227 (5)
O2	0.3062 (2)	0.17401 (16)	0.14730 (18)	0.0266 (6)
O1W	0.4733 (2)	0.04150 (17)	0.12115 (19)	0.0208 (6)
O3	-0.00731 (19)	0.24467 (16)	0.52507 (17)	0.0265 (6)
O4	0.35191 (19)	0.04171 (16)	0.25344 (18)	0.0257 (6)
Ni1	0.35134 (4)	0.13565 (3)	0.01819 (3)	0.02231 (14)
HW12	0.495 (2)	-0.0135 (16)	0.107 (2)	0.020 (10)*
HW11	0.440 (3)	0.034 (2)	0.166 (2)	0.053 (15)*

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
C1	0.023 (2)	0.0180 (19)	0.0236 (19)	-0.0040 (15)	0.0094 (15)	-0.0067 (15)
C2	0.025 (2)	0.0174 (19)	0.0172 (18)	0.0032 (14)	0.0099 (15)	0.0011 (14)
C3	0.034 (2)	0.0166 (19)	0.037 (2)	-0.0033 (16)	0.0226 (18)	0.0027 (16)
C4	0.033 (2)	0.0108 (18)	0.033 (2)	0.0005 (15)	0.0184 (18)	-0.0043 (15)
C5	0.024 (2)	0.0201 (19)	0.0198 (19)	0.0018 (15)	0.0110 (15)	0.0017 (15)
C6	0.023 (2)	0.0178 (19)	0.028 (2)	-0.0063 (15)	0.0133 (17)	-0.0083 (16)
C7	0.0207 (18)	0.0162 (18)	0.0187 (17)	0.0009 (14)	0.0085 (14)	0.0007 (14)
C8	0.0238 (19)	0.0136 (17)	0.0162 (17)	0.0012 (14)	0.0088 (15)	0.0009 (13)
C9	0.030 (2)	0.021 (2)	0.030 (2)	0.0018 (16)	0.0157 (17)	-0.0013 (16)
C10	0.034 (2)	0.0147 (19)	0.039 (2)	-0.0018 (16)	0.0167 (19)	-0.0041 (16)
C11	0.037 (2)	0.022 (2)	0.041 (2)	-0.0094 (17)	0.021 (2)	-0.0018 (17)
C12	0.030 (2)	0.025 (2)	0.028 (2)	-0.0024 (16)	0.0182 (17)	-0.0027 (16)
C13	0.047 (3)	0.023 (2)	0.029 (2)	0.0090 (18)	0.0076 (19)	-0.0050 (17)
C14	0.057 (3)	0.035 (2)	0.026 (2)	0.019 (2)	-0.004 (2)	0.0003 (18)
C15	0.035 (2)	0.024 (2)	0.027 (2)	0.0056 (17)	-0.0011 (18)	-0.0046 (16)
C16	0.027 (2)	0.019 (2)	0.037 (2)	0.0056 (15)	0.0124 (18)	-0.0005 (16)
C17	0.030 (2)	0.020 (2)	0.039 (2)	0.0018 (16)	0.0105 (18)	-0.0001 (17)
C18	0.029 (2)	0.020 (2)	0.039 (2)	0.0005 (16)	0.0105 (18)	0.0004 (17)
C19	0.033 (2)	0.020 (2)	0.036 (2)	-0.0053 (16)	0.0123 (18)	-0.0043 (17)

C20	0.025 (2)	0.025 (2)	0.074 (3)	-0.0038 (17)	0.023 (2)	-0.005 (2)
C21	0.019 (2)	0.024 (2)	0.031 (2)	-0.0005 (15)	0.0100 (16)	0.0025 (16)
N4	0.0213 (17)	0.0140 (15)	0.0293 (17)	-0.0003 (12)	0.0092 (13)	-0.0001 (13)
C23	0.025 (2)	0.023 (2)	0.071 (3)	-0.0001 (17)	0.023 (2)	-0.011 (2)
N1	0.0244 (17)	0.0182 (16)	0.0264 (17)	0.0042 (12)	0.0104 (14)	0.0006 (13)
N2	0.0265 (17)	0.0127 (16)	0.0304 (17)	0.0036 (12)	0.0086 (14)	0.0024 (12)
N3	0.0238 (17)	0.0149 (16)	0.0341 (17)	-0.0021 (13)	0.0099 (14)	-0.0015 (13)
01	0.0282 (14)	0.0136 (12)	0.0333 (14)	0.0018 (10)	0.0196 (11)	0.0008 (11)
O2	0.0385 (16)	0.0226 (14)	0.0284 (14)	0.0093 (11)	0.0246 (12)	0.0068 (11)
O1W	0.0230 (15)	0.0157 (14)	0.0277 (15)	0.0028 (11)	0.0138 (12)	-0.0024 (11)
O3	0.0388 (16)	0.0215 (13)	0.0276 (14)	0.0028 (11)	0.0226 (12)	0.0014 (11)
O4	0.0309 (15)	0.0202 (14)	0.0316 (14)	0.0091 (11)	0.0178 (12)	0.0062 (11)
Ni1	0.0259 (3)	0.0180 (2)	0.0269 (3)	0.0016 (2)	0.0137 (2)	0.0008 (2)

Geometric parameters (Å, °)

1.240 (4)	C16—C17	1.505 (5)
1.270 (4)	C16—H16A	0.9700
1.508 (4)	C16—H16B	0.9700
1.356 (4)	C17—C18	1.525 (4)
1.434 (4)	C17—H17A	0.9700
1.400 (4)	C17—H17B	0.9700
0.9300	C18—C19	1.515 (4)
1.375 (4)	C18—H18A	0.9700
0.9300	C18—H18B	0.9700
1.420 (4)	C19—N3	1.466 (4)
1.500 (4)	C19—H19A	0.9700
1.240 (4)	C19—H19B	0.9700
1.279 (4)	C20—C23	1.338 (5)
1.421 (4)	C20—N3	1.368 (4)
1.424 (4)	C20—H20	0.9300
1.412 (4)	C21—N4	1.306 (4)
1.356 (4)	C21—N3	1.341 (4)
0.9300	C21—H21	0.9300
1.392 (5)	N4—C23	1.367 (4)
0.9300	N4—Ni1 ⁱ	2.099 (3)
1.347 (4)	С23—Н23	0.9300
0.9300	O1—Ni1 ⁱⁱ	2.116 (2)
0.9300	O1W—HW12	0.819 (16)
1.343 (5)	O1W—HW11	0.83 (4)
1.355 (4)	O3—Ni1 ⁱⁱ	2.347 (2)
0.9300	Ni1—O1W	2.125 (2)
1.363 (4)	Ni1—O2	2.040 (2)
0.9300	Ni1—O1 ⁱⁱⁱ	2.116 (2)
1.299 (4)	Ni1—O3 ⁱⁱⁱ	2.347 (2)
1.334 (4)	Ni1—N1	2.060 (3)
0.9300	Ni1—N4 ^{iv}	2.099 (3)
1.472 (4)		
	$\begin{array}{c} 1.240 \ (4) \\ 1.270 \ (4) \\ 1.508 \ (4) \\ 1.356 \ (4) \\ 1.434 \ (4) \\ 1.400 \ (4) \\ 0.9300 \\ 1.375 \ (4) \\ 0.9300 \\ 1.420 \ (4) \\ 1.279 \ (4) \\ 1.240 \ (4) \\ 1.279 \ (4) \\ 1.279 \ (4) \\ 1.421 \ (4) \\ 1.424 \ (4) \\ 1.412 \ (4) \\ 1.356 \ (4) \\ 0.9300 \\ 1.392 \ (5) \\ 0.9300 \\ 1.347 \ (4) \\ 0.9300 \\ 1.347 \ (4) \\ 0.9300 \\ 1.343 \ (5) \\ 1.355 \ (4) \\ 0.9300 \\ 1.363 \ (4) \\ 0.9300 \\ 1.299 \ (4) \\ 1.334 \ (4) \\ 0.9300 \\ 1.472 \ (4) \end{array}$	$1.240 (4)$ $C16-C17$ $1.270 (4)$ $C16-H16A$ $1.508 (4)$ $C16-H16B$ $1.356 (4)$ $C17-C18$ $1.434 (4)$ $C17-H17A$ $1.400 (4)$ $C17-H17B$ 0.9300 $C18-C19$ $1.375 (4)$ $C18-H18A$ 0.9300 $C18-H18B$ $1.420 (4)$ $C19-H3$ $1.500 (4)$ $C19-H19A$ $1.240 (4)$ $C19-H19A$ $1.240 (4)$ $C19-H19B$ $1.279 (4)$ $C20-C23$ $1.421 (4)$ $C20-H20$ $1.412 (4)$ $C21-H3$ 0.9300 $C21-H21$ $1.356 (4)$ $C21-H3$ 0.9300 $C21-H21$ $1.392 (5)$ $N4-C23$ 0.9300 $O1-Ni1^{ii}$ 0.9300 $O1-Ni1^{ii}$ 0.9300 $O1-Ni1^{ii}$ 0.9300 $O1-H111$ $1.355 (4)$ $O3-Ni1^{ii}$ 0.9300 $O1-H111$ $1.355 (4)$ $O3-Ni1^{ii}$ 0.9300 $Ni1-O1^{iii}$ 0.9300 N

O4—C1—O2	124.8 (3)	H17A—C17—H17B	107.9
O4—C1—C2	120.4 (3)	C19—C18—C17	110.8 (3)
O2—C1—C2	114.8 (3)	C19—C18—H18A	109.5
C3—C2—C8	119.5 (3)	C17—C18—H18A	109.5
C3—C2—C1	118.9 (3)	C19—C18—H18B	109.5
C8—C2—C1	121.5 (3)	C17—C18—H18B	109.5
C2—C3—C4	121.6 (3)	H18A—C18—H18B	108.1
С2—С3—Н3	119.2	N3—C19—C18	113.0 (3)
С4—С3—Н3	119.2	N3—C19—H19A	109.0
C5—C4—C3	121.1 (3)	C18—C19—H19A	109.0
С5—С4—Н4	119.5	N3—C19—H19B	109.0
C3—C4—H4	119.5	С18—С19—Н19В	109.0
C4—C5—C7	119.2 (3)	H19A—C19—H19B	107.8
C4—C5—C6	119.1 (3)	C23—C20—N3	106.2 (3)
C7—C5—C6	121.7 (3)	С23—С20—Н20	126.9
O3—C6—O1	120.7 (3)	N3—C20—H20	126.9
O3—C6—C5	121.2 (3)	N4—C21—N3	112.7 (3)
O1—C6—C5	118.1 (3)	N4—C21—H21	123.6
C5—C7—C12	122.5 (3)	N3—C21—H21	123.6
С5—С7—С8	119.6 (3)	C21—N4—C23	104.3 (3)
С12—С7—С8	117.8 (3)	C21—N4—Ni1 ⁱ	128.0 (2)
C9—C8—C7	118.6 (3)	C23—N4—Ni1 ⁱ	127.4 (2)
C9—C8—C2	122.4 (3)	C20-C23-N4	110.8 (3)
C7—C8—C2	118.9 (3)	С20—С23—Н23	124.6
C10—C9—C8	121.5 (3)	N4—C23—H23	124.6
С10—С9—Н9	119.2	C15—N1—C13	104.8 (3)
С8—С9—Н9	119.2	C15—N1—Ni1	126.0 (2)
C9—C10—C11	119.7 (3)	C13—N1—Ni1	129.1 (2)
C9—C10—H10	120.2	C15—N2—C14	105.8 (3)
C11—C10—H10	120.2	C15—N2—C16	126.7 (3)
C12-C11-C10	121.3 (3)	C14—N2—C16	127.5 (3)
C12-C11-H11	119.4	C21—N3—C20	106.0 (3)
C10-C11-H11	119.4	C21—N3—C19	125.8 (3)
C11—C12—C7	121.1 (3)	C20—N3—C19	128.1 (3)
C11—C12—H12	119.5	C6—O1—Ni1 ⁱⁱ	94.87 (19)
С7—С12—Н12	119.5	C1—O2—Ni1	130.1 (2)
C14—C13—N1	110.2 (3)	Ni1—O1W—HW12	126 (2)
C14—C13—H13	124.9	Ni1—O1W—HW11	97 (3)
N1—C13—H13	124.9	HW12—O1W—HW11	110 (2)
C13—C14—N2	106.3 (3)	C6—O3—Ni1 ⁱⁱ	85.3 (2)
C13—C14—H14	126.9	O2—Ni1—N1	85.93 (10)
N2-C14-H14	126.9	O2—Ni1—N4 ^{iv}	102.65 (10)
N1—C15—N2	112.9 (3)	N1—Ni1—N4 ^{iv}	96.70 (11)
N1—C15—H15	123.6	O2—Ni1—O1 ⁱⁱⁱ	159.34 (9)
N2—C15—H15	123.6	N1—Ni1—O1 ⁱⁱⁱ	94.01 (10)
N2-C16-C17	112.4 (3)	N4 ^{iv} —Ni1—O1 ⁱⁱⁱ	97.87 (10)
N2	109.1	O2—Ni1—O1W	85.20 (9)

C17—C16—H16A	109.1	N1—Ni1—O1W	169.33 (10)
N2-C16-H16B	109.1	N4 ^{iv} —Ni1—O1W	91.03 (10)
C17—C16—H16B	109.1	O1 ⁱⁱⁱ —Ni1—O1W	92.20 (9)
H16A—C16—H16B	107.9	O2—Ni1—O3 ⁱⁱⁱ	100.97 (9)
C16—C17—C18	111.9 (3)	N1—Ni1—O3 ⁱⁱⁱ	86.35 (10)
С16—С17—Н17А	109.2	N4 ^{iv} —Ni1—O3 ⁱⁱⁱ	156.33 (9)
C18—C17—H17A	109.2	O1 ⁱⁱⁱ —Ni1—O3 ⁱⁱⁱ	58.47 (8)
С16—С17—Н17В	109.2	O1W—Ni1—O3 ⁱⁱⁱ	89.53 (8)
C18—C17—H17B	109.2		

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) *x*-1/2, -*y*+1/2, *z*+1/2; (iii) *x*+1/2, -*y*+1/2, *z*-1/2; (iv) *x*, *y*-1, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1W—HW12···O1 ^v	0.819 (16)	1.847 (18)	2.661 (3)	172 (3)
O1W—HW11…O4	0.83 (4)	1.83 (4)	2.651 (3)	169 (3)
Symmetry codes: (v) $-x+1/2$, $y-1/2$, $-z+1/2$.				

